Министерство образования и науки Российской Федерации Московский государственный университет им. М.В.Ломоносова

Факультет химический Кафедра физической химии

УТВЕРЖДЕН					
на заседании кафедры «	<u></u> >>		2009 г.		
протокол №					
Заведующий кафедрой		/		_/	
<u>«</u>	»		2009 г.		
Рекомендуем	ая литер	ратура обі	новлена в		Γ.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

дисциплины «КРИСТАЛЛОХИМИЯ»

Направление подготовки (специальность) 020101.65 (011000) «Химия»

Квалификация (степень) выпускника Химик

Форма обучения очная

УМКд соответствует учебном плану подготовки 2009 г.

УМК составлен:

д.х.н., профессор Словохотов Ю.Л.

Москва 2009

1. СОДЕРЖАНИЕ УМК

Nº	Элемент УМК	Место нахождения документов
1	Содержание УМК	Кафедра физической химии
2	Выписка из ОС МГУ (или ФГОС)	Кафедра физической химии
3	Рабочая программа дисциплины	Сайт http://www.chem.msu.su/rus/teaching/lecture- courses/401-crystals.html
4	Учебно-методические материалы:	Кафедра физической химии
4.1. Планы лекций 4.2. Темы семинарских занятий http://www.c		Сайт http://www.chem.msu.su/rus/cryst/cryschem/welcome-cryschem.html
5	Учебники и учебные пособия	Кафедра физической химии
6	Методические рекомендации для преподавателя	Кафедра физической химии
7	Методические указания для студента	Сайт http://www.chem.msu.su/rus/cryst/cryschem/welcome-cryschem.html
8	Фонд оценочных средств (контрольный блок)	Сайт http://www.chem.msu.su/rus/cryst/cryschem/welcome-
	8.1. Вопросы и задания для текущего, промежуточного и итогового контроля	cryschem.html Кафедра физической химии
	8.2. Фонд проверки остаточных знаний	
9	Дополнительные элементы	Кафедра физической химии

2. ВЫПИСКА ИЗ ФГОС ВПО (составляется из пункта п. 6.3. ФГОС ВПО)

	Специальность 011000 - Химия	Число
		часов
	Квалификация — химик	ПО
	1	ФГОС
		ВПО
	Кристаллохимия:	100
ОПД.Ф.10	предмет и задачи кристаллохимии, кристаллическая структура	
(Общепрофесс	и способы ее моделирования; основы рентгеноструктурного	

иональные дисциплины направления, федеральный компонент)	анализа; группы симметрии и структурные классы; общая кристаллохимия (типы химических связей в кристаллах, систематика кристаллических структур, шаровые упаковки и кладки, кристаллохимические радиусы атомов, изоморфизм и полиморфизм); избранные главы систематической кристаллохимии (простые вещества, бинарные и тернарные соединения,	
	силикаты, органические вещества); обощенная кристаллохимия	

3. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Программа дисциплины «**Кристаллохимия**» составлена в соответствии с требованиями ФГОС ВПО к структуре и результатам освоения основных образовательных программ специалитета по профессиональному циклу по специальности 011000 - Химия.

Дисциплина «Кристаллохимия» относится к базовой части блока химических дисциплин, является обязательным курсом и имеет целью дать учащемуся основные теоретические знания в области структуры веществ различной природы — металлов, сплавов, неорганических солей, индивидуальных и смешанных оксидов, координационных соединений и т.п. Значительное внимание в курсе уделяется современному состоянию дел в данной области знания и новейшим методам изучения структур фаз. Дисциплина включает курс лекций и самостоятельную работу.

Цели и задачи освоения дисциплины.

Цель: показать роль кристаллохимии как теоретического фундамента современной структурной химии, научить основам теории симметрии и элементам теории рентгеновской дифракции, базовым структурным типам неорганических соединений, структурным представлениям в химии, дать общую информацию о направлениях развития современной кристаллохимии.

Задачи: привить учащимся навыки систематического подхода к решению структурно-химических задач фундаментального и прикладного характера

Требования к результатам освоения содержания дисциплины

В результате освоения дисциплины студент должен

Знать: основные законы и закономерности строения кристаллических веществ, способы аналитического и графического представления кристаллической структуры.

Уметь: формулировать конкретные структурно-химические задачи на основе законов и закономерностей, освоенных в курсе кристаллохимии; пользоваться данными рентгенофазового и рентгеноструктурного анализа в химических исследованиях, обобщать полученные результаты.

Владеть: приемами построения графиков точечных и простейших пространственных групп, методами определения орбит группы, навыками поиска структурно-химических данных в открытых источника (в том числе, в банках структурных данных) и применения их при решении практических химических задач

Приобрести опыт деятельности: в анализе, формулировке и решении конкретных структурно-химических задач, как фундаментальных, так и практических.

3.1. Структура дисциплины

Общая трудоемкость дисциплины составляет 81 час, из них 54 ч. – лекции, 27 ч. - самостоятельная работа по подготовке к текущему и промежуточному контролю.

Dur noferry	Семестр	Всего
Вид работы	7	Beero
Общая трудоёмкость, акад. часов	81	81
Аудиторная работа:	54	54
Лекции, акад. часов	54	54
Семинары, акад. часов	-	-
Лабораторные работы, акад. часов	-	-
Самостоятельная работа, акад. часов	27	27
Вид итогового контроля (зачёт, зачёт с оценкой, эк-	Экзамен	
замен)		

Разделы дисциплины по семестрам

№ раз-	Наименование раздела	К	оличество ч	асов	Форма
дела		Всего	Ауди- торная	Самостоя-	текущего контроля
			работа	работа	_
			Лекции		
1	Точечные группы симметрии конечных фигур и молекул	18	8	3	Дз, Т, КР
2	Группы симметрии кристаллов	24	10	3	Дз, Т, КР
3	Методы исследования атомной структуры кристаллов	28	10	3	Дз, Т, КР
4	Атомная структура простых веществ	18	8	3	Дз, Т, КР
5	Структурные типы бинарных и тройных соединений	28	8	3	Дз, Т, КР
6	Основные направления современной кристаллохимии	28	10	3	Дз, Т, КР
	Итого:	81	54	27	

4. УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

4.1. Планы лекций

No	Наименова-	Содержание раздела	Форма
раз-	ние раздела		текущего
дела			контроля
1	Точечные группы симметрии конечных фигур и молекул	 2 ч. Операции и элементы симметрии. Взаимодействие операций. Собственные и несобственные вращения, хиральные фигуры. 2 ч. Группа операций симметрии. Геометрические образы несобственных вращений в системах Шенфлиса и Германа-Могена, взаимосвязь порядков зеркально- 	Д3, Т

		поворотных и инверсионных осей.	
		2 ч. Категории симметрии и семейства точечных групп по Шенфлису и Герману-Могену. Точечные группы геометрических фигур и молекул. Симметрия правильных многогранников (платоновых тел). Формула Эйлера. 2 ч. Орбита точечной группы, кратность орбиты и локальная симметрия ее точек. Симметрически независимая область фигуры. Предельные группы бесконечного порядка (группы Кюри).	Т, РК
2	Группы симметрии кристаллов	 2 ч. Трансляционная симметрия и кристаллическая решетка, параметры элементарной ячейки. Кристаллографические закрытые элементы симметрии. Сингонии, голоэдрические группы, кристаллографические классы, классы Лауэ. 2 ч. Связь кристаллографического класса с физическими свойствами. Решетки Браве. Фракционные координаты точки в элементарной ячейке. Кристаллографические направления и кристаллографические плоскости в 	Т, ДЗ
		2 ч. Открытые кристаллографические элементы симметрии, их обозначения и действие. Оси, входящие в состав осей 4_k и 6_k ; энантиоморфные винтовые оси. Взаимодействие открытых и закрытых элементов между собой; их взаимодействие с перпендикулярными и наклонными трансляциями.	Т, РК
		2 ч. Пространственные группы, их символы по Герману-Могену, связь с кристаллографическим классом. Симморфные и несимморфные группы.	
		2 ч. Системы эквивалентных позиций (орбиты) про- странственных групп, кратность общей позиции. Гра- фики простейших групп низших и средних сингоний, их построение по правилам взаимодействия элементов симметрии. Интернациональные таблицы и содержа- щаяся в них информация о пространственных группах.	
3	Методы ис- следования атомной структуры кристаллов	2 ч. Принцип работы и спектр рентгеновской трубки. Тормозное излучение и характеристические линии. Синхротронное излучение, выработка рентгеновского СИ в ускорителе электронов (накопительном кольце).	T
	кристаллов	2 ч. Дифракция рентгеновского излучения на кристал- ле. Формула Брегга, кристаллы-монохроматоры. Блок- схема рентгеновского дифрактометра. Мозаичное строение реального кристалла, зависимость полушири- ны рефлекса от размера области когерентного рассея- ния, формула Шерера.	
		2 ч. Межплоскостные расстояния и индексы рефлексов,	Т, ДЗ

			1
		понятие об обратной решетке. Индицирование порошковых дифрактограмм в рентгенофазовом анализе. Относительные интенсивности рефлексов, корундовое число. Закон Фриделя. Банк порошковых данных ICDD. Систематические погасания рефлексов.	
		3 ч. Атомный фактор рассеяния. Интегральные интенсивности рефлексов и структурные амплитуды F_{hkl} . Понятие о проблеме фаз и методах расшифровки кристаллических структур. Основные этапы рентгеноструктурного анализа монокристаллов (PCA). Параметры тепловых колебаний, R -фактор.	
		1 ч. Представление данных РСА в химических статьях. Банки структурных данных: поиск и обработка содержащейся в них структурной информации.	
4.	Атомная структура простых веществ	2 ч. Межатомные взаимодействия в кристаллических металлах, зависимость физических свойств металлов от их строения и межатомного связывания. Металлические радиусы. Структуры металлов: плотные и плотнейшие шаровые упаковки (ПК, ПГ, ОЦК, ГПУ, ГЦК); виды и размеры пустот. Полиморфизм и изоморфизм в металлах, многослойные шаровые упаковки.	Т, ДЗ
		2 ч. Твердые растворы замещения и внедрения. Простейший интерметаллид Cu_3Au , фазовый переход «порядок — беспорядок». Понятие о кластерах и наночастицах металлов. Особенности строения простых веществ для элементов, примыкающих к неметаллам в Периодической системе, искажения плотнейших упаковок.	
		2 ч. Принципы строения неметаллов: ковалентные и ван-дер-ваальсовы взаимодействия, мотивы расположения атомов в кристалле (островной, цепочечный, трубчатый, слоистый, каркасный). Аллотропия, полиморфизм и изоморфизм, политипы в неметаллах. Структуры алмаза, лонсдейлита, α – и β –графита, Si, Ge, α – и β –Sn, I_2 , кристаллических инертных газов. Ротационные фазы H_2 и β – N_2 .	
		2 ч. Мотивы из атомов и расположение молекул в кристаллах фуллерена C_{60} , α – N_2 , белого и черного фосфора, желтого и серого As, ромбической и моноклинной серы S_8 , красного и серого селена. Принципы строения нанотрубок углерода, красного фосфора, пластической и волокнистой серы. Относительные значения длин связей и невалентных контактов в простых веществах неметаллов.	
5	Структур- ные типы бинарных и тройных со-	2 ч. Бинарные соединения, построенные по принципу плотной упаковки анионов с катионами в пустотах. Ионные кристаллохимические радиусы. Простейшие структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит),	Т, РК

	единений	NiAs, флюорит и антифлюорит, рутил, двухслойный и	
		четырехслойный политипы CdI_2 , $CdCl_2$ и Cs_2O .	
		2 ч. «Корундовый» мотив из катионов и упаковка анионов в α -Al ₂ O ₃ и FeCl ₃ . «Антикорундовый» мотив (AlF ₃) Строение M ₃ C ₆₀ (M = K, Rb, Cs, Tl) и ионного проводника α -AgI. Корреляции свойств бинарных соединений со структурой и соотношением радиусов ионов. Изоморфное замещение катионов в кристаллах, рубин.	
		2 ч. Проявления ковалентного связывания в структурах MoS_2 , Cu_2O , PtS . Полиморфные модификации BN , SiO_2 (α –кварц, β –тридимит, β –кристобалит, стишовит), H_2O (лед Ih и лед Ic). Принципы построения тройных соединений: халькопирита $CuFeS_2$, ильменита $FeTiO_3$, перовскитов ABO_3 , нормальных и обращенных («инвертированных») шпинелей AB_2O_4 . Строение ReO_3 и Na_xWO_3 ; переход кубического $BaTiO_3$ в сегнетоэлектрическую фазу.	
		2 ч. Характерные лигандные полиэдры в координационных соединениях. Мостиковая функция лигандов, координационные полиэдры с общими вершинами. Структурные мотивы из ковалентно связанных атомов (островной, цепочечный, ленточный, слоистый, каркасный) в бинарных соединениях. Бинарные фазы с полианионами: CaC_2 , FeS_2 пирит, MgB_2 . Связи металлметалл и кластеры металлов в бинарных производных низших степеней окисления, фрагменты $M_6(\mu_3-X)_8$ и $M_6(\mu_2-X)_{12}$ (октаэдры M_6 с мостиками по граням и ребрам), фазы Шевреля. Клатраты и кристаллогидраты.	
6	Основные направления современной кристалло-химии	2 ч. Соли кислородных кислот. Типы координации анионов и их склонность к агрегации в рядах нитраты — карбонаты — бораты и перхлораты — сульфаты — фосфаты — силикаты. Описание структур КСІО4, K_2PtCl_6 , $CaCO_3$ (кальцит, арагонит) по аналогии с простыми структурными типами. Примеры орто-силикатов и орто-алюминатов: циркон $ZrSiO_4$, гранаты $A^{II}_3B^{III}_2(SiO_4)_3$ ($Ca_3Al_2(SiO_4)_3$ — гроссуляр, $Mg_3Al_2(SiO_4)_3$ — пироп), $Y_3Al_5O_{12}$ (YAG). Анионные циклы, цепи, ленты, слои и каркасы из тетраэдрических фрагментов $ЭO_4$ с общими вершинами. Принципы строения цеолитов, «содалитовый фонарь» в $Na_8[Si_6Al_6O_{24}]Cl_2$.	Т, ДЗ
		2 ч. Органическая кристаллохимия. Стандартные длины одинарных и кратных связей С–С. Ковалентные и ван-дер-ваальсовы радиусы основных элементоворганогенов: С, Н, О, N, F, Cl, Br. Атом-атомные потенциалы и принцип плотной упаковки молекул в органической кристаллохимии, коэффициент упаковки, молекулярное координационное число. «Уплотняющие» и «разрыхляющие» элементы симметрии, преобладающие пространственные группы молекулярных	Т, ДЗ

кристаллов. Пространственные группы оптических изомеров и рацематов. Мотивы расположения молекул в кристаллических структурах метана, адамантана, налканов, бензола, нафталина, ферроцена. 2 ч. Твердые растворы замещения и внедрения; полиморфизм органических соединений. Паркетный мотив и стопки в расположении уплощенных молекул; комплексы с переносом заряда и ион-радикальные соли. Типы Н-связей: интервалы энергии, расстояний Х···Y, углов Х-Н···Y (X, Y = O, N, S, F). Влияние водородных связей на структуру и свойства кристаллов, мотивы Н-связанных молекул. Соли карбоновых кислот, гидрофобное взаимодействие. Органические ротационные фазы и жидкие кристаллы.	
2 ч. Строение координационных и металлоорганических соединений. Плотная упаковка лигандов в координационной сфере атома металла. Псевдовращение Берри. Толмановский угол как характеристика стерических свойств лиганда. Понятие о молекулярных кристаллах с особыми свойствами (проводниках, магнетиках, сегнетоэлектриках). Пайерлсовский переход в кристаллах.	T
2 ч. Принципы строения полимеров и биополимеров. Кристаллические полиэтилен и полиацетилен. Конформации макромолекул: спираль и статистический клубок. Общие принципы строения белковых макромолекул (соединение пептидных остатков и их конформационные параметры; первичная, вторичная и третичная структура). Геометрические характеристики конформаций α-спирали и β-листа. Фибриллярные, мембранные и глобулярные белки. Плотная упаковка элементов вторичной структуры на «поверхности» белковой глобулы. Понятие о РСА белков на синхротронном излучении	T

4.2. Семинары (практические занятия) не предусмотрены

5. УЧЕБНИКИ И УЧЕБНЫЕ ПОСОБИЯ

<u>Основная литература</u> (базовые учебники выделены курсивом, они имеются в библиотеке химического факультета). Контрольные экземпляры в электронном и бумажном виде хранятся на кафедре физической химии (каб. зав.кафедрой).

- 1. П.М.Зоркий, Симметрия молекул и кристаллических структур, МГУ, 1986.
- 2. П.М.Зоркий, Н.Н.Афонина, Симметрия молекул и кристаллов, МГУ, 1979.
- 3. Т.В.Богдан, Основы рентгеновской дифрактометрии. Учебно-методическое пособие к общему курсу кристаллохимии. М.: Химфак МГУ, 2012.
- 4. Г.Б.Бокий, Кристаллохимия, 3-е изд. М.: Наука, 1971.
- 5. А.Вест, Химия твердого тела, М., Мир, 1988; т.1.
- 6. Г.Кребс, Основы кристаллохимии неорганических соединений, М., Мир, 1971.

Дополнительная литература.

- 1. Е.М.Доливо-Добровольская, В.В.Доливо-Добровольский, Пространственные группы симметрии (федоровские группы). Практическое руководство. СПбГУ, 2011.
- 2. Ю.К.Егоров-Тисменко, Г.П.Литвинская, Теория симметрии кристаллов, М.: ГЕОС, 2000.
- 3. Д.Ю.Пущаровский, Рентгенография минералов, М., ЗАО «Геоинформмарк», 2000.
- 4. У. Мюллер, Структурная неорганическая химия. Долгопрудный, Интеллект, 2010.
- 5. Ю.К. Егоров-Тисменко, Кристаллография и кристаллохимия, М., Университет, 2005.
- 6. Н.Я. Турова, Неорганическая химия в таблицах, М., 1997.
- 7. Д. Киперт, Неорганическая стереохимия, М., Мир, 1985.
- 8. А.В. Финкельштейн, О.Б. Птицин, Физика белка, М., Университет, 2005

Интернет-ресурсы

http://www.chem.msu.ru/rus/cryst/cryschem/glavy.html http://www.chem.msu.su/rus/cryst/welcome1.html

6. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЯ

В учебном процессе можно использовать пассивные, активные и интерактивные формы проведения занятий. При чтении лекций целесообразно использовать вспомогательный иллюстративный материал, размещенный на сайте

http://www.chem.msu.su/rus/cryst/cryschem/welcome-cryschem.html

http://www.chem.msu.su/rus/cryst/cryschem/opisanie.htm

http://database.iem.ac.ru/mincryst/

На сайте http://www.chem.msu.su/rus/cryst/cryschem/welcome-cryschem.html в качестве примера приведены материалы для подготовки к контрольным работам:

Контрольная работа 2:

- •Примеры задач с ответами по теме "Группы симметрии и структурные классы цепей и слоев"
- •Обоснование типа решетки кристаллической структуры
- •Примеры задач с ответами и решениями по теме "Группы симметрии и структурные классы кристаллических структур"
- •Дополнительные примеры задач с ответами по теме "Группы симметрии и структурные классы кристаллических структур"

Контрольная работа 3

- •Описание некоторых простых кристаллических структур ("джентльменский набор")
- •"Стандартный план" описания кристаллической структуры
- •Примеры описания структур по стандартному плану (NaCl, a-графит, вюрцит)

Примеры вопросов и задач промежуточного (текущего) и рубежного приведены в Фонде оценочных средств.

Образовательные технологии

лекции с демонстрационными экспериментами,

использование средств дистанционного сопровождения учебного процесса, занятия в компьютерном классе с использованием вычислительных комплексов со специализированным программным обеспечением.

7. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТА

В процессе самостоятельной работы должны формироваться самостоятельность мышления, способности к саморазвитию, умения по поиску и использованию справочной и специальной литературы, а также других источников информации.

Самостоятельное изучение разделов дисциплин

№ раз-	№ во-	Вопросы, выносимые на самостоятельное изуче-	Кол-во часов
дела	проса	ние	
1	1 - 2	Вопросы для подготовки к контрольной №1.	3
2	3 - 5	Вопросы для подготовки к контрольной №2.	3
		Дополнительно:	
		Пользование Интернациональными таблицами	
3	6 – 8	Вопросы к семинарам №№ 6 – 8.	3
		Выполнение домашнего задания по рентгенофа-	
		зовому анализу	
4	9 – 10	Вопросы для подготовки к контрольной №3.	3
5	11 - 13	Вопросы для подготовки к контрольной №3.	3
		Дополнительно:	
		Компьютерные средства визуализации кристал-	
		лических структур	
6	14 – 16	Описание кристаллических структур по Кем-	3
		бриджскому банку.	
		Выполнение домашнего задания	
		Дополнительно	
		Методы дифракционного исследования структу-	
		ры полимеров и биополимеров. Структурные ис-	
		следования белков с использованием СИ	

Курсовая работа (возможные темы)

- 1. Выветривание полигидратов солей: РФА-мониторинг химической реакции
- 2. Твердые растворы $KCr(SO_4)_2/KAl(SO_4)_2 \cdot 12H_2O$. Получение, состав, параметры элементарной ячейки и правило Вегарда.
- 3. Упорядоченная кристаллическая и ротационная фазы н-гептадекана $C_{17}H_{36}$. РФА-мониторинг фазового перехода.
- 4. Рентгенофазовый анализ смесей кристаллических веществ с использованием банка данных ICDD.

Сетевой ресурс поддержки образовательного процесса www.chem.msu.ru/rus/cryst/cryschem/welcome-cryschem

Рекомендации: что надо знать к экзамену на «отлично»

I. **Геометрия и симметрия кристаллических структур**. Твердо знать символы закрытых элементов симметрии по Герману-Могену и их графические обозначения, включая инверсионные оси; знать взаимодействие элементов 2-го порядка (m_{xz} : m_{yz} = 2_z ; 2_x : 2_y = 2_z ; $\overline{1}$: 2_z = m_{xy}) и сочетание поворотной оси порядка N (а) с «вертикальной» плоскостью m, (б) с перпендикулярной осью 2. Знать принципы обозначения точечных групп по Герману-Могену, распознавать их символы. Уверенно находить элементы симметрии в простейших

геометрических фигурах (правильный п-угольник, правильные п-угольные пирамида, призма и антипризма, тетраэдр, куб, октаэдр) и некоторых молекулах (H_2O , NH_3 , BF_3 , CX_4 , где X=Hи галоген, PCl_5 , SF_6 , этилен C_2H_4 , бензол C_6H_6 , этан C_2H_6 в заслоненной и шахматной конформациях, циклогексан C_6H_{12} в конформациях кресло и ванна). Уметь по рисунку или модели определять элементы симметрии и группу для координационного полиэдра или молекулы (напр.: тригональная призма с «шапкой» над боковой гранью, замещенный этилен, бензол или нафталин и т.д.). Знать наизусть 7 голоэдрических групп (1, 2/m, mmm, 4/mmm, 3m, 6/mmm, m 3m) Знать международные символы 32 кристаллографических групп, уметь по символу группы определить ее категорию и голоэдрию. Уметь по заданному символу группы низшей и средней категории нарисовать расположение ее элементов, определить порядок группы (число операций симметрии) и найти ее подгруппы. Знать, как обозначаются элементы симметрии и точечные группы по Шенфлису, уметь объяснить действие зеркального поворота (в системе Шенфлиса) и его соотношение с поворотом с инверсией в международной системе. Знать, из каких элементов состоят бесконечные ("предельные") точечные группы конуса, цилиндра и сферы; иллюстрировать группы конуса и цилиндра примерами линейных молекул.

Твердо знать сингонии, их голоэдрические группы и условия, накладываемые в каждой сингонии на параметры элементарной ячейки. Знать 14 решеток Браве и смысл символов центрировки (P, A, B, C, I, F, R). Знать, как обозначаются индексами направления и плоскости в решетке, уметь по рисунку определить индексы Миллера для системы плоскостей, проходящих через элементарную ячейку. Знать обозначения винтовых осей и плоскостей скольжения (a, b, c, n, d) и системы эквивалентных точек для этих элементов. Знать простейшие комбинации открытых и закрытых элементов симметрии (трансляции с перпендикулярной ей плоскостью или осью, трансляции с центром 1, плоскости и перпендикулярной оси 2-го порядка, взаимно перпендикулярных плоскостей). Знать принципы обозначения пространственных групп по Герману-Могену, уметь по международному символу пространственной группы определить ее решетку Браве, кристаллографический класс и кратность общей позиции в элементарной ячейке. Уметь нарисовать графики простейших групп (P1, P 1, P2, P2, C2, Pm, Pc, Cm, Cc, P2/m, P2/c, P2₁/m, P2₁/c, C2/m, P222, P2₁2₁2₁, Pmm2, Pmmm, P4, P4₁, P4₂, P 4, P3, P3₁, P6, P6₁, P6₂, P6₃) и показать на графике орбиты. Уметь пользоваться Интернациональными таблицами для нахождения графиков групп и систем их эквивалентных позиций.

П.М.Зоркий, Симметрия молекул и кристаллических структур, гл. 1, 3, 5. П.М.Зоркий, Н.Н.Афонина, Симметрия молекул и кристаллов, гл. I, II (§§ 1,2), IV (кроме §11), VI.

П. Начальные положения дифрактометрии. Знать диапазон энергий мягкого (100 эВ -2-3 кэВ) и жесткого (5-100 кэВ) рентгеновского излучения, рабочую формулу связи энергии и длины волны излучения (\square (\mathring{A}) \approx 12.40/E(кэВ)). Уметь переводить ангстремы в нанометры (нм) и пикометры (пм). Знать схему и принцип работы рентгеновской трубки, общие вид ее спектра, происхождение тормозного излучения и характеристических линий $K_{\square 1}$, $K_{\square 2}$ и K_{\square} . Знать принципы работы накопительного кольца и получения синхротронного излучения (СИ) в поворотном магните.

Знать наизусть формулу Вульфа-Брегга $2d_{hkl}sin\Box=n\Box$ и смысл входящих в нее параметров, уметь вывести эту формулу на экзамене. Знать принцип работы брегговского монохроматора. Иметь представление о различных методах регистрации дифракционной картины: с монокристалла на «белом» излучении (метод Лауэ), с монокристалла на монохроматическом излучении, с поликристаллического порошка на монохроматическом излучении. Иметь представление об индицировании рентгенограммы, знать смысл индексов рентгеновского отражения (hkl) и формулу $1/d_{hkl}^2 = h^2/a^2 + k^2/b^2 + l^2/c^2$ для орторомбических кристаллов. Уметь перевести углы рефлексов $2\Box$ в межплоскостные расстояния d на выданной дифрактограмме незнакомого вещества. Иметь представление о рентгенофазовом анализе.

Знать связь интенсивностей рентгеновских отражений I(hkl) с комплексными структурными амплитудами F(hkl), представлять суть проблемы фаз. Знать основные этапы получения массива данных {I(hkl)} и определения кристаллической структуры по этому массиву в рентгеноструктурном анализе (PCA). Понимать смысл параметров кристаллической структуры, определяемых в PCA (параметров элементарной ячейки a, b, c, $\square\square\square\square\square\square$; фракционных атомных координат x_i /a, y_i /b, z_i /c; параметров тепловых колебаний U_{ij} в изотропном и анизотропном приближениях, R-фактора). Знать принципы использования банка структурных данных CSD, возможности поиска и статистической обработки депонированной в нем информации.

- 1. М.А. Порай-Кошиц, Основы структурного анализа химических соединений, М., Высшая школа, 1987.
- 2. Я.В.Зубавичус, Ю.Л.Словохотов, «Успехи химии», 2001, т. 70, с.с. 429-463.

III. Основы кристаллохимии. Знать типы взаимодействия атомов в кристалле (металлическое, ионное, ковалентное, ван-дер-ваальсово), иметь представление о соответствующих кристаллографических радиусах элементов. Знать наизусть 5 шаровых упаковок: простую (примитивную) гексагональную (ПГ), простую (примитивную) кубическую (ПК), объемноцентрированную кубическую (ОЦК), гексагональную плотнейшую (ГПУ, она же двухслойная плотнейшая упаковка), гранецентрированную кубическую (ГЦК, она же кубическая плотнейшая (КПУ) и трехслойная плотнейшая упаковка), уметь нарисовать на экзамене их элементарные ячейки в проекции на грань. Знать по 2-3 примера металлов, кристаллизующихся в ОЦК, ГПУ и ГЦК, коэффициенты плотности упаковки и геометрию ближайшего окружения атомов металла в них. Знать числа и радиусы тетраэдрических и октаэдрических пустот, приходящихся на 1 атом в ГПУ и ГЦК, иметь представление о политипах, нестехиометрических фазах внедрения и наночастицах. Знать порядок кратчайших межатомных расстояний в металлах и общий вид изменения металлического радиуса при движении слева направо в периоде и сверху вниз по подгруппе.

Знать общую схему описания кристаллических структур, используемую в научной химической лиетратуре (сингония, параметры ячейки, пр. группа, число формульных единиц, проекция элементарной ячейки, структурный тип и/или мотивы расположения атомов, основные межатомные расстояния и валентные углы).

Знать кристаллические структуры алмаза и \Box графита, уметь нарисовать на экзамене для них проекцию элементарной ячейки. Знать принципы строения лонсдейлита, \Box графита, алмазоподобных Si и Ge, серого (\Box) и белого (\Box) олова. Знать молекулярную структуру фуллерена C_{60} и мотив расположения его молекул в кристалле, строение углеродной нанотрубки. Знать сингонии и мотивы расположения атомов в кристаллах белого и черного фосфора, желтого и серого As, молекулярной и волокнистой серы, серого Se, а также строение кристаллических Cl_2 , Br_2 , I_2 (структурный тип иода), \Box формы кристаллического N_2 , кристаллических водорода и инертных газов. Узнавать эти структуры по модели на экзамене. Знать порядки величин атомных и ван-дер-ваальсовых радиусов C, N, O, S, Cl; представлять, как изменяются эти радиусы при движении слева направо по периоду и сверху вниз по подгруппе. Иметь представление о «выравнивании» длин внутримолекулярных связей и межмолекулярных контактов в простых веществах при движении сверху вниз по подгруппе (P – As – Sb, S – Se – Te, Cl – Br – I).

Знать порядки значений ионных радиусов, направления их изменения с возрастанием заряда иона ($\text{Li}^+ - \text{Mg}^{2+} - \text{Al}^{3+}$) и атомного номера в подгруппе ($\text{Li}^+ - \text{Cs}^+$, $\text{Mg}^{2+} - \text{Ba}^{2+}$, $\text{F-}\Gamma$). Знать базовые структурные типы CsCl, NaCl, ZnS (сфалерита), ZnS (вюрцита), NiAs, CaF₂ (флюорита) и Li_2O (антифлюорита), TiO_2 (рутила), перовскита ABO_3 , ReO_3 . Узнавать эти структуры по модели на экзамене, для каждой уметь нарисовать проекцию элементарной ячейки, знать их описание как плотной упаковки шаров с заполненными (частично или целиком) пустотами и описание в полиэдрах. Для каждого структурного типа знать 2-3 примера из разных классов соединений (например: галогенидов и оксидов металлов). Уметь нарисовать ячейку и опре-

делить один из указанных структурных типов для незнакомого соединения по заданным фракционным координатам атомов. Знать 3-4 примера более сложных соединений, построенных по принципу заполнения пустот в плотнейшей упаковке (KClO₄, K_2 PtCl₆, M_3 C₆₀ и т.д.). Знать принципы строения слоистых соединений (типы CdI₂, CdCl₂, MoS₂) и их политипов с заполнением через слой пустот в плотнейшей упаковке анионов, знать примеры слоистых хлоридов и гидроксидов металлов. Знать корундовый мотив с заполнением 2/3 октаэдрических пустот в слое, принципы строения $\Box Al_2O_3$ и рубина, слоистых галогенидов MX_3 , шпинелей AB_2O_4 .

Уметь объяснить отклонения от плотнейших упаковок из-за образования направленных ковалентных связей и устойчивых недозаполненных электронных оболочек (PtS, PdCl₂, Cu₂O, HgS). Знать структуры кубического и гексагонального BN, гексагональной (Ih) и кубической (Ic) модификаций льда, простейших полиморфов SiO₂ (□□тридимита, □□кристобалита, стишовита); иметь представление о строении □□кварца. Уметь приводить простые примеры аллотропии (алмаз-графит-фуллерены; белый, черный и фиолетовый фосфор; орторомбическая, ромбоэдрическая и пластическая сера), полиморфизма (орторомбическая и моноклинная сера; сфалерит-вюрцит, тридимит — кристобалит — кварц и т.д.), изоморфных кристаллических структур (NaCl — KCl — KBr, ZnS сфалерит — кубический BN) и изоморфного замещения.

- 1. А. Вест, Химия твердого тела, М., Мир, 1988; т.1, гл. 7, 8.
- 2. Г. Кребс, Основы кристаллохимии неорганических соединений, М., Мир, 1971, гл. 9-14.
- 3. Н.Я.Турова, Неорганическая химия в таблицах, М., 1997
- 4. Ю.К. Егоров-Тисменко, Кристаллография и кристаллохимия, М., Университет, 2005, гл.6.
- 5. Г.Б.Бокий, Кристаллохимия, М., 1971 г. (3-е издание)

IV. Строение неорганических, органических и координационных соединений. Знать примеры бинарных галогенидов и халькогенидов металлов, относящихся к базовым структурным типам. Знать основные координационные полиэдры металлов с к.ч. 4 (тетраэдр, плоский квадрат), 5 (тригональная бипирамида, тетрагональная пирамида), 6 (октаэдр, тригональная призма), 7 (октаэдр с шапкой, тригональная призма с шапкой), 8 (тригональная призма с 2 шапками, архимедова антипризма, тригон-додекаэдр, куб), 9 (трехшапочная тригональная призма, архимедова антипризма с «шапкой»), 10 (двухшапочная архимедова антипризма), 12 (икосаэдр). Знать основные типы координации галогенидных и халькогенидных лигандов (концевые, \Box_2 , \Box_3 - и \Box_4 -мостиковые), простейшие фазы с полианионами (CaC₂, FeS₂), простейшие мотивы из координационных полиэдров с общими вершинами (ZnS, SiO₂, ReO₃), ребрами (NaCl, BeCl₂, PdCl₂, CuCl₂) и гранями (NiAs). Знать основные структурные мотивы в кристаллах бинарных соединений: островной (0D), цепочечный и ленточный (1D), слоистый (2D), каркасный (3D) с 1-2 примерами для каждого. Иметь представление о кластерных фрагментах в бинарных галогенидах и халькогенидах металлов в низших степенях окисления: $M_3(\Box_0-X)_3X_6$, $M_4(\Box_0-X)_4$, $M_6(\Box_0-X)_{12}$, $M_6(\Box_0-X)_8$.

Иметь представление о строении солей кислородных кислот с катионами металлов, различных видах координации аниона (концевой, хелатной, мостиковой, смешанной), вхождении молекул H_2O в первую координационную сферу гидратированных катионов. Знать принципы строения водных клатратов, квасцов $M^IM^{III}(SO_4)_3 \cdot 12H_2O$, $HPF_6 \cdot 6H_2O$, гидратов солей с гексаакво-катионами металлов. На примере силикатов и алюмосиликатов знать основные полианионные мотивы (орто- SiO_4^{4-} , $Si_2O_7^{6-}$, циклические островные $[SiO_3^{2-}]_n$ (n=3,4,6), цепочечные (пироксеновый), ленточные (амфиболовый), слоистый, каркасный $[Si_{1-x}Al_xO_2]^{x-}$), получаемые при конденсации тетраэдрических фрагментов $9O_4$ по общими вершинам. Знать принципы построения кристаллов гранатов $A_3B_2(SiO_4)_3$ и $Y_3Al_5O_{12}$; иметь представление о строении цеолитов.

Знать принцип плотной упаковки низкосимметричных молекул (в приближении твердых ван-дер-ваальсовых сфер) в молекулярном кристалле и его основные проявления в органической кристаллохимии (узкий интервал коэффициента заполнения объема (0.65-0.80), высокие молекулярные координационные числа (МКЧ = 10-14), предпочтительность низших сингоний, центра 1 и открытых элементов симметрии). Знать порядки длин связей С-С, С-Н, С-С1, С=С, С-О, С=О и типичных коротких ван-дер-ваальсовых контактов С...С, С...Н, С... N, С... О в кристаллах органических соединений. Иметь представление о расчетах энергии ван-дер-ваальсовых взаимодействий в молекулярных кристаллах с использованием потенциалов Леннард-Джонса $-Ar^{-6}+Br^{12}$ («6-12») и Букингема $-Ar^{-6}+Be^{-Cr}$ («6-ехр»). Знать типы водородных связей Х-Н... У в органических соединениях (сильная, средняя, слабая) их геометрические характеристики (расстояния Х...Ү, угол Х-Н...Ү) и влияние Н-связей на строение и свойства молекулярных кристаллов. Уметь нарисовать общее расположение молекул в структурных классах P^1 , Z=2 ($\overline{1}$, $\overline{1}$); P_1 , Z=2 (1); P_2 /c, Z=2 ($\overline{1}$); и P_2 /c, Z=4 (1). Знать мотивы расположение молекул в кристаллах адамантана $C_{10}H_{16}$, бензола C_6H_6 , нафталина $C_{10}H_8$, ферроцена $(C_5H_5)_2$ Fe, н-алканов C_nH_{2n+2} , фенола C_6H_5OH , карбоновых кислот RCOOH; узнавать эти структуры по рисунку на экзамене.

Понимать общие принципы строения координационных соединений с органическими лигандами. Иметь общее представление о строении ротационных фаз и жидких кристаллов

- 1. Г. Кребс, Основы кристаллохимии неорганических соединений, М., Мир, 1971, гл. 9-14.
- 2. Н.Я. Турова, Неорганическая химия в таблицах, М., 1997
- 3. Г.Б.Бокий, Кристаллохимия, М., 1971 г. (3-е издание)
- 4. Д. Киперт, Неорганическая стереохимия, М., Мир, 1985.
- 5. А.И.Китайгородский, Молекулярные кристаллы, М., Наука, 1971 г., гл. 1 и 2.

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Вопросы к рубежным контрольным работам

Раздел 1, КР-1: точечные группы симметрии конечных фигур и молекул.

Операции и элементы симметрии. Взаимодействие закрытых элементов симметрии. Собственные и несобственные вращения.

Точечные группы в обозначениях Шенфлиса. Группы низшей категории симметрии. Семейства групп средней категории симметрии. Группы высшей категории симметрии, их порядки. Симметрия правильных многогранников (платоновых тел). Предельные точечные группы.

Точечные группы в обозначениях Германа-Могена. Связь порядков инверсионных осей с порядками зеркально-поворотных осей системы Шенфлиса. Перевод символов точечных групп из одной системы в другую. Орбита точечной группы, кратность орбиты и локальная симметрия ее точек.

Раздел 2, КР-2: группы симметрии кристаллов.

Элементарная ячейка кристалла, параметры ячейки. Обозначения примитивных и центрированных кристаллических решеток. Индексы направлений и плоскостей в кристалле. Закрытые кристаллографические элементы симметрии. Сингонии, решетки Браве и кристаллографические классы.

Открытые элементы симметрии, их обозначения и действие. Взаимодействие элементов симметрии порядка 2 с перпендикулярными и наклонными трансляциями. Особенности взаимодействия с участием осей порядка выше 2. Взаимодействие кристаллографических (закрытых и открытых) элементов симметрии. Пространственные группы, связь с решетками Браве и кристаллографическими классами. Системы эквивалентных позиций (орбиты) пространственных групп, кратность орбиты. Частные и общие положения в кристалле. Интернациональные Таблицы. Построение простейших графиков пространственных групп и их орбит.

Раздел 3, ДЗ: рентгенофазовый анализ.

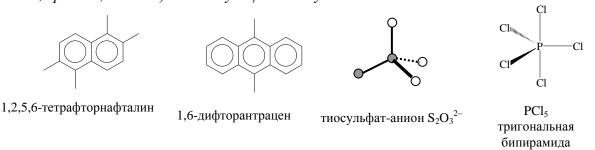
Принцип работы и спектр рентгеновской трубки. Формула Брегга. Блок-схема рентгеновского дифрактометра. Формула Шерера. Индицирование дифрактограммы кубического кристалла. Межплоскостные расстояния, относительные интенсивности и индексы рефлексов в рентгенофазовом анализе. Корундовое число. Банк порошковых данных ICDD.

Разделы 4 и 5, КР-3: основные структурные типы.

Строение металлов, плотные и плотнейшие шаровые упаковки, размеры пустот. Металлические радиусы. Структурные типы Cu, Mg, $\Box \Box$ Fe, $\Box \Box$ Po. Многослойные упаковки. Искажения идеальных упаковок в структурах Zn, Cd, In, Hg. Твердые растворы замещения, фазовый переход с упорядочением (Си₃Au). Структуры алмаза, лонсдейлита, гексагонального графита, □ □ и □ □Sn. Политипы графита. Мотивы расположения молекул в \square \square N_2 , \square \square N_2 , H_2 , структурном типе Cl_2 (I_2), полиморфах фуллерена C_{60} . Бесконечные мотивы в структурах черного фосфора, $\Box \Box As$ (Sb, Bi), $\Box \Box Se$

при движении сверху вниз по подгруппе в Периодической системе. Плотная упаковка анионов с катионами в пустотах в бинарных соединениях. Ионные радиусы. Структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит), NiAs, CaF₂. Строение TiO₂ (рутил), $C_{60}M_3$, $\Box \Box \Box Al_2O_3$ (корундовый мотив заполнения октаэдрических пустот), AlF_3 (антикорундовый мотив). Слоистые структуры LiOH и PbO (анти-LiOH), политипов CdI₂, Cs₂O

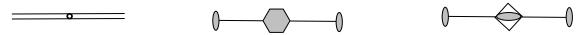
(Те). Соотношение длин связей и несвязывающих контактов в кристаллах простых веществ


Структуры бинарных соединений с ковалентным связыванием: ВМ (кубический и гексагональный), Cu₂O, PtS, MgB₂. Принципы строения HgS (киноварь, метациннабарит), BeCl₂, $PdCl_2$, FeS_2 , CaC_2 , Структурные типы перовскита ABO_3 (ReO_3) и шпинели AB_2O_4 .

Варианты контрольных работ

(анти-CdCl₂), MoS₂ и NbS₂, FeCl₃.

К разделу 1


1. Определите точечную группу (международный символ, символ Шёнфлиса) и категорию (низшая, средняя, высшая) для следующих молекул:

2. Выпишите обозначения указанных ниже групп в другой системе

 $m \overline{3}$ 3m 5m 6m2 C_{4h} S_4 C_{4v} D_5 D_{5h}

3. Дорисуйте недостающие элементы симметрии в приведенных ниже графиках точечных групп. Выпишите символы этих групп по Герману-Могену и по Шёнфлису

4. Изобразите расположение элементов симметрии точечной группы 42m; покажите на графике все орбиты этой группы, выпишите кратность каждой орбиты.

К разделу 2

- 1. Изобразите на проекции систему эквивалентных точек
- (a) для оси 4_2 , проходящей перпендикулярно плоскости рисунка.
- (б) для плоскости **n**, совпадающей с плоскостью рисунка
- $\underline{2}$. Изобразите на рисунке расположение элементов симметрии, возникающих в результате взаимодействия
- (a) плоскости **т** и перпендикулярной, к ней оси ${f 2_1}$
- (б) оси $\overline{3}$ и перпендикулярной к ней трансляции T
- 3. Для приведенных ниже пространственных групп определите центрирование решетки (укажите термин), сингонию, кристаллографический класс и кратность общей позиции (т.е. позиции с локальной симметрией 1) в элементарной ячейке.

Символ группы:

P6/mcc

 $12_{1}3$

 $I4_1/amd$

 $Cmc2_1$

Cccm

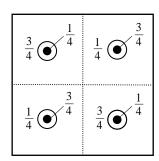
C2/c

Ccc

тип решетки

сингония:

крист. класс:


кратность позиции 1:

<u>4.</u> Нарисуйте график пространственной группы **P6**, нанесите на него все (различные) правильные системы точек и укажите их кратность.

К разделам 4, 5

- 1. В приведенном списке подчеркните вещества, образующие гексагональные кристаллы: Cu, Mg, белое олово, лонсдейлит, CdI₂, Li₂O, I₂, H₂, CsCl, Cu₃Au, вюрцит, NiAs, α –N₂, NbS₂, He, Ge, серый мышьяк, Zn, α –Po, ромбическая сера, TiO₂ анатаз, α –Fe, Hg.
- 2. В тернарном соединении $A_m B_n X_p$ катионы A и анионы X расположены по мотиву флюорита, а катионы B занимают оставшиеся пустоты в этом мотиве. Определите состав соединения и геометрию координационного окружения катионов B анионами X.
- 3. По данной проекции элементарной ячейки определите структурный тип соединения. Изобразите проекцию элементарной ячейки в общепринятом для данного структурного типа виде. Приведите примеры веществ, относящихся к этому типу.

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$

4. Расположение атомов в кристаллах титаната стронция соответствует структурному типу перовскита. Параметр элементарной ячейки a = 3.9 А. Оцените анионный радиус кислорода. Ответ поясните с помощью проекции элементарной ячейки.

5. По сингонии и координатам атомов изобразите проекцию элементарной ячейки кристалла. Определите состав и структурный тип соединения, мотив кристаллической структуры, число формульных единиц в ячейке и координацию атомов (координационные полиэдры и координационные числа).

Гексагональная сингония, $\gamma = 120^{0}$

атом	x/a	y/b	z/c
M(1)	2/3	1/3	1/4
M(2)	2/3	1/3	3/4
X(1)	1/3	2/3	1/2
X(2)	1	1	1

Вопросы для подготовки к экзамену (семестр 7):

- 1. Операции и элементы симметрии. Закрытые элементы симметрии и их орбиты, взаимодействие элементов симметрии. Матрицы преобразований симметрии в двумерном и трехмерном пространстве. Собственные и несобственные вращения, хиральные фигуры.
- 2. Точечные группы операций симметрии в обозначениях Шенфлиса. Группы низшей категории симметрии. Семейства групп средней категории симметрии, порядки этих групп при порядке главной оси п. Стереографическая проекция. Группы высшей категории симметрии, их порядки и составляющие элементы. Симметрия правильных многогранников (платоновых тел). Формула Эйлера. Предельные точечные группы бесконечного порядка.
- 3. Точечные группы в обозначениях Германа-Могена. Инверсионные оси и их связь с зеркально-поворотными осями системы Шенфлиса. Перевод символов инверсионных осей и точечных групп из одной системы в другую. Орбита точечной группы, кратность орбиты и локальная симметрия ее точек. Понятие о простых формах. Симметрически независимая область фигуры.
- 4. Трансляционная симметрия и кристаллическая решетка. Элементарная ячейка кристалла, различные способы ее выбора (параллелепипед повторяемости, полиэдр Вороного-Дирихле); параметры ячейки. Обозначения примитивных и центрированных решеток. Фракционные координаты точек, индексы направлений и плоскостей в кристалле произвольной сингонии. Симметрически связанные направления и формы. Матрица Грама. Кристаллографические элементы симметрии в 2D- и 3D-случаях. Сингонии, решетки Браве и кристаллографические точечные группы в двумерном и трехмерном случаях; классы Лауэ. Связь кристаллографического класса со свойствами на примере полярных и хиральных кристаллов.
- 5. Открытые элементы симметрии, их происхождение, обозначения и действие. Плоскости скользящего отражения, энантиоморфные и неэнантиоморфные винтовые оси. Взаимодействие элементов симметрии порядка 2 с перпендикулярными и наклонными трансляциями. Особенности взаимодействия с участием осей порядка выше 2. Взаимодействие кристаллографических (закрытых и открытых) элементов симметрии.
- 6. Пространственные группы, их связь с решетками Браве и кристаллографическими классами. Симморфные и несимморфные группы, пары энантиоморфных групп. Системы эквивалентных позиций (орбиты) пространственных групп, кратность орбиты. Частные и общие положения в кристалле. Подгруппы пространственных групп. Информация о пространственных группах, содержащаяся в т. 1 Интернациональных Таблиц.
- 7. Построение графиков групп триклинной, моноклинной и орторомбической сингоний. Особенности центрировки (А- и С-) в классе mm2. Стандартная и нестандартные установки. Выбор начала координат в пространственной группе. Принципы построения символов и графики отдельных групп тригональной, тетрагональной и гексагональной сингоний. Диаго-

нальные и апофемальные элементы симметрии. Кубизация групп орторомбической и тетрагональной сингоний.

- 8. Принцип работы и спектр рентгеновской трубки. Тормозное излучение и характеристические линии. Синхротронное излучение, выработка рентгеновского СИ в ускорителе электронов (накопительном кольце). Дифракция рентгеновского излучения на кристалле. Формула Брегга, кристаллы-монохроматоры. Блок-схема рентгеновского дифрактометра. Мозаичное строение реального кристалла, зависимость полуширины рефлекса от размера области когерентного рассеяния, формула Шерера.
- 9. Межплоскостные расстояния и индексы рефлексов, понятие об обратной решетке. Связь индексов hkl с межплоскостными расстояниями, индицирование дифрактограмм. Использование порошковых дифрактограмм в рентгенофазовом анализе. Относительные интенсивности рефлексов, корундовое число. Банк порошковых данных ICDD. Закон Фриделя и систематические погасания рефлексов.
- 10. Атомный фактор рассеяния. Интегральные интенсивности рефлексов и комплексные структурные амплитуды F_{hkl} . Понятие о проблеме фаз и методах расшифровки кристаллических структур. Основные этапы рентгеноструктурного анализа монокристаллов (PCA). Отношение числа наблюдаемых рефлексов к числу варьируемых параметров, изотропное и анизотропное приближения, R-фактор. Представление данных PCA в химических статьях. Банки структурных данных (ICSD, CSD): поиск и обработка содержащейся в них структурной информации.
- 11. Типы межатомных взаимодействий (металлическое, кулоновское, ковалентное, ионное). Строение металлов, плотные и плотнейшие шаровые упаковки, размеры пустот. Металлические радиусы. Маккеевская икосаэдрическая упаковка мягких сфер. Структурные типы Си, Мg, □ Fe, □ Po. Многослойные упаковки, последовательность плотнейших слоев в металлах. Искажения идеальных упаковок в структурах Zn, Cd, In, Hg. Твердые растворы замещения Сu−Au, фазовый переход с упорядочением. Структура интерметаллидов Cu₃Au, CuAu и Nb₃Sn («□ W»). Фазы Юм-Розери и Лавеса. Твердые растворы внедрения в структурах карбидов, нитридов и гидридов металлов, карбиды вольфрама. Правило Хейга.
- 12. Ковалентные связи и невалентные взаимодействия в структурах неметаллов. Структуры алмаза, лонсдейлита, гексагонального графита, кристаллических Cl_2 (I_2), кристаллических инертных газов. Принципы строения ромбоэдрического графита, кристаллических $\square \square N_2$, $\square \square N_2$, $\square \square N_2$, $\square \square N_2$, Слоистые соединения внедрения графита. Мотивы из атомов и молекул в неметаллах подгруппы бора, углерода, фосфора и серы. Соотношение длин связей и несвязывающих контактов в кристаллах простых веществ при движении сверху вниз по подгруппе в Периодической системе.
- 13. Бинарные соединения, построенные по принципу плотной упаковки анионов с катионами в пустотах. Структурные типы CsCl, NaCl, ZnS (сфалерит, вюрцит), NiAs, CaF₂, TiO₂ (рутил): упаковки атомов и заполнение пустот в них, примеры соединений. Строение $C_{60}M_3$, $C_{60}M_6$ (М металл) и Na₃As. Корундовый мотив заполнения октаэдрических пустот в $\square \square Al_2O_3$, антикорундовый мотив заполнения пустот (AlF₃). Твердые растворы замещения, рубин. Слоистые структуры LiOH и PbO (анти-LiOH), политипов CdI₂, Cs₂O (анти-CdCl₂), MoS₂ и NbS₂, галогенидов и гидроксидов MX_3 . Ионные радиусы.
- 14. Структуры бинарных соединений с ковалентным связыванием. Структуры BN (кубический и гексагональный), Cu_2O , PtS, MgB_2 . Принципы строения HgS (киноварь, метациннабарит), $BeCl_2$, $PdCl_2$, FeS_2 (пирит, марказит), CaC_2 , $CaSi_2$, LaB_6 . Фазы Цинтля. Мостиковая координация \Box_n -галогенидных и \Box_n -халькогенидных лигандов. Кластерные фрагменты $M_4(\Box_3-X)_4$, $M_6(\Box_3-X)_8$ и $M_6(\Box_2-X)_{12}$ в низших галогенидах и халькогенидах переходных металлов, фазы Шевреля. Принципы строения полиморфных модификаций SiO_2 (кварц, \Box тридимит, \Box кристобалит, стишовит) и ионного проводника \Box AgI.

- 15. Сверхструктурное упорядочение в «бинарных» структурных типах (ильменит $FeTiO_3$, халькопирит $CuFeS_2$). Структурные типы перовскита ABO_3 и ReO_3 , структура Na_xWO_3 . Принципы строения нормальных и обращенных шпинелей, примеры соединений. Нестехиометрические шпинели (тип $\square \square Al_2O_3$).
- 16. Координационные полиэдры, отвечающие к.ч. 3-10, их симметрия. Принципы строения молекулярных оксидов и галогенидов, тип SnI₄. Строение CH₄, NH₃, HCl. Геометрические характеристики водородных связей (сильных, средних и слабых). Принципы строения льда Ih и Ic и водных клатратов.
- 17. Мотивы бинарных соединений в структурах безводных солей. Принципы строения $KClO_4$, K_2PtCl_6 , $CaCO_3$ (кальцит, арагонит), $CaWO_4$ ($ZrSiO_4$). Упаковка анионов и координация атомов металла в оливине $(Fe,Mg)_2SiO_4$. Принципы строения гранатов $A^{II}_3B^{III}_2(SiO_4)_3$ и $Y_3Al_5O_{12}$ (YAG). Координация анионов и свойства солей в рядах нитраты—карбонаты—бораты, перхлораты—сульфаты—фосфаты. Неорганические сегнетоэлектрики (KH_2PO_4 , перовскиты) и антисегнетоэлектрики ($NH_4H_2PO_4$).
- 18. Островные, цепочечные, ленточные, слоистые и каркасные мотивы из конденсированных тетраэдров в структурах силикатов и алюмосиликатов. Структурные мотивы в тортвейтите $Sc_2Si_2O_7$, берилле $Be_3Al_2(Si_6O_{12})$ и изумруде. Сетка кагоме. Пироксеновые цепочки $[Si_2O_6^{4^-}]_{\infty}$, амфиболовые ленты $[Si_4O_{11}^{4^-}]_{\infty}$, бесконечные слои $[Si_2O_5^{2^-}]_{\infty}$, содалитовый фонарь $[Si_{12}Al_{12}O_{48}]^{12^-}$ в содалите $Na_8[Si_6Al_6O_{24}]Cl_2$, гидросодалите $Na_8[Si_6Al_6O_{24}](OH)_2$, ультрамарине $(Na,Ca)_8[Si_6Al_6O_{24}](SO_4^{2^-},S^{2^-},Cl^-)$. Принципы строения талька, глин и слюд, цеолитов. Островные и цепочечные мотивы в структурах боратов. Конденсированные октаэдры в островных изополи- и гетерополианионах, структура Кеггина $M_{12}X^{n+}O_{40}^{(8-n)-}$ (где M=Mo,W; $X^{n+}=Si^{IV},Ge^{IV},P^V,As^V$).
- 19. Молекулярные кристаллы органических соединений. Стандартные длины одинарных и кратных связей С—С. Ковалентные и ван-дер-ваальсовы радиусы основных элементов—органогенов: С, H, O, N, F, Cl, Br. Атом-атомные потенциалы и принцип плотной упаковки молекул. Коэффициент заполнения k и молекулярное координационное число (МКЧ). Строение кристаллов из квазисферических (метан, адамантан), длинноцепочечных (н-алканы) и уплощенных молекул (бензол, нафталин). Стопки и паркетные слои молекул в кристаллах.
- 20. Характерные элементы симметрии и преобладающие пространственные группы для органических соединений. Структурные классы. Полиморфизм и твердые растворы органических соединений. Пространственные группы кристаллов из хиральных молекул и рацематов. Понятие о ротационных и жидкокристаллических фазах.
- 21. Комплексы с переносом заряда и ион-радикальные соли. Особенности кристаллических структур с H-связями: k, МКЧ, $T_{пл}$ и $T_{кип}$; островные, цепочечные и слоистые мотивы. Соли карбоновых кислот, гидрофобное взаимодействие.
- 22. Строение координационных и металлоорганических соединений. Плотная упаковка лигандов в координационной сфере атома металла. Псевдовращение Берри (PF₅). Кристаллические структуры $PCl_5=PCl_4+PCl_6$ и $PBr_5=PBr_4+Br_-$. Толмановский угол как характеристика стерических свойств лиганда. Понятие о молекулярных кристаллах с особыми свойствами (проводниках, магнетиках, сегнетоэлектриках). Пайерлсовский переход в кристаллах.
- 23. Принципы строения полимеров и биополимеров. Кристаллические полиэтилен и полиацетилен. Конформационная карта элементарного звена, спираль и статистический клубок. Полисахариды, степень кристалличности, дендримеры. Общие принципы строения белковых макромолекул (соединение пептидных остатков и их конформационные параметры; первичная, вторичная и третичная структура). Конформации □□спирали и □□листа. Фибриллярные, мембранные и глобулярные белки. Плотная упаковка элементов вторичной структуры на «поверхности» белковой глобулы. Понятие о РСА белков на синхротронном излучении.