Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный университет имени М.В.Ломоносова» Факультет фундаментальной физико-химической инженерии

УТВЕРЖДЕН

на заседании Ученого совета
«_14_»__июня___2013 г.
протокол №_4_
Заместитель декана по учебной работе
_____/_Григорьева Л.Д._/
«_14_»__июня___2013 г.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

дисциплины «АНАЛИТИЧЕСКАЯ ХИМИЯ»

Специальность 010701 "Физика"

Квалификация "Физик"

Форма обучения очная

УМК соответствует учебному плану подготовки, утвержденному ректором Московского государственного университета им. М.В.Ломоносова академиком РАН В.А. Садовничим 23.10.2009

Название дисциплины: Общая химия. Аналитическая химия

1. Цели и задачи дисциплины:

А. Изучение теоретических основ химических (титриметрических и гравиметрических) и инструментальных (спектроскопических и электрохимических) методов анализа; освоение теоретических представлений о химических равновесиях в гомогенных и гетерогенных системах; получение практических навыков экспериментальной работы в аналитической лаборатории; применение полученных знаний для качественного и количественного анализа природных и техногенных объектов.

Б. - умение рассчитывать химические равновесия, параметры химических систем; знание теоретических основ классических и инструментальных методов анализа

2. Требования к результатам освоения содержания дисциплины:

В результате освоения дисциплины обучающийся должен:

Знать: теоретические основы современных методов химического анализа и характеристики методов химического анализа;

Уметь: применять полученные знания в научно-исследовательской работе;

Владеть: навыками применения методов химического анализа для анализа различных объектов, в первую очередь объектов окружающей среды.

3. Содержание и структура дисциплины

Общая трудоемкость – 150 ч.

Аудиторная нагрузка – 102 ч.

Самостоятельная работа – 48 ч.

Аудиторная нагрузка включает:

Лекции – 68 акад. часов

Семинары – 34 акад. часа

Формы текущего контроля:

контрольные работы, коллоквиумы, домашние задания

1 ,	, , ,		
Вид работы	Семестр 3	Семестр 4	Всего
Общая трудоемкость	80	70	150
Аудиторная работа:	54	48	102
Лекции (Л)	36	32	68
Практические занятия (ПЗ)	18	16	34
Лабораторные работы (ЛР)	0		0
Самостоятельная работа	26	22	48
Вид итогового контроля	Зачет	Зачет, экзамен	

3.1. Распределение трудоемкости по разделам и темам...

№	Наименование разделов	Трудоемкость в ак. часах по формам занятий и видам работ Аудиторная работа Самостоя			Форма контроля
		Лекции	Практические занятия (семинары)	тельная работа	
1	Предмет и методы аналитической химии. Химическое равновесие в	4	2	2	домашнее задание, контрольная

	гомогенной системе.				работа,
					коллоквиум
2	Кислотно-основное равновесие. Современные представления о кислотах и основаниях. Расчет рН.	6	4	4	домашнее задание, контрольная работа, коллоквиум
3	Химическое равновесие в гетерогенной системе. Расчет условий растворения и осаждения осадков.	4	2	4	домашнее задание, контрольная работа, коллоквиум
4	Комплексные соединения. Равновесие в реакциях комплексообразования. Органические реагенты в аналитической химии.	6	2	4	домашнее задание, контрольная работа, коллоквиум
5	Окислительно- восстановительные реакции. Индуцированные и автокаталитические реакции.	4	2	4	домашнее задание, контрольная работа, коллоквиум
6	Титриметрические методы анализа. Кислотно-основное титрование.	4	2	4	домашнее задание, коллоквиум
7	Комплексо- и комплексонометрическое титрование	4	2	2	коллоквиум
8	Окислительно- восстановительное титрование	4	2	2	коллоквиум
9	Гравиметрический метод анализа	8	2	4	коллоквиум
10	Метрологические основы аналитической химии.	6	2	4	домашнее задание, контрольная работа
11	Основы спектроскопических методов анализа	6	2	4	коллоквиум
12	Основы электрохимических методов анализа	6	2	2	коллоквиум
13	Основы хроматографических методов анализа	6	2	4	коллоквиум
14	Методы обнаружения катионов и анионов. Качественный анализ модельных смесей и реальных объектов		6	4	контрольная работа

3.2. Содержание дисциплины

<u>Раздел I.</u> Химическое равновесие.

- Тема 1. Предмет и методы аналитической химии. Химическое равновесие в гомогенной системе.
- Тема 2. Кислотно-основное равновесие. Современные представления о кислотах и основаниях. Расчет рН в растворах кислот, оснований, амфолитах, буферных растворах. Нивелирующий и дифференцирующий эффект растворителя.
- Тема 3. Химическое равновесие в гетерогенной системе. Термодинамическое, реальное и условное произведение растворимости. Расчет условий растворения и осаждения осалков.

- Тема 4. Комплексные соединения и органические реагенты. Равновесие в реакциях комплексообразования. Ступенчатые и общие константы устойчивости комплексов. Теоретические основы взаимодействия ионов металлов с органическими реагентами.
- Тема 5. Окислительно-восстановительные реакции. Уравнение Нернста. Стандартный, формальный, равновесный потенциалы. Направление реакций окисления-восстановления. Индуцированные и автокаталитические реакции.

Раздел II. Химические методы анализа.

- Тема 6. Титриметрические методы анализа. Кислотно-основное титрование. Построение кривых титрования.
- Тема 7. Комплексометрическое титрование. Применение аминополикарбоновых кислот в комплексонометрии.
- Тема 8. Окислительно-восстановительное титрование. Перманганатометрия, иодометрия, дихроматометрия.
- Тема 9. Гравиметрический метод анализа. Практическое применение для анализа почв и геологических объектов.
- Тема 10. Метрологические основы аналитической химии. Статистическая обработка результатов анализа.

Раздел III. Обзор инструментальных методов анализа.

- Тема 11. Основы спектроскопических методов анализа: атомная и молекулярная спектроскопия, рентгенофлуоресцентный анализ ($P\Phi A$). Практическое применение $P\Phi A$ для анализа почв.
- Teма 12. Основы электрохимических методов анализа: потенциометрия, кулонометрия, вольтамперометрия, кондуктометрия.
- Тема 13. Основы хроматографических методов анализа: газовой, жидкостной и планарной хроматографии.
- Тема 14. Методы обнаружения катионов и анионов. Качественный анализ модельных смесей и реальных объектов

Задания для самостоятельной работы:

проработать материал лекций, выполнить домашние задания (7 заданий), соответствующие конкретному разделу лекционного курса, подготовиться к коллоквиумам (3 коллоквиума) и к рубежным контрольным работам (3 работы).

4. Образовательные технологии

Интерактивные образовательные технологии, используемые в аудиторных занятиях

Семестр	Вид Интерактивные образовательные технологии		Кол-во часов
	занятия		
3-4	Лекции,	мультимедийный проектор, презентация,	102
	семинары	интерактивная доска	
Итого			102

5. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

- **Б**. Примерный список заданий:
- 1. <u>Химическое равновесие в гомогенной системе.</u> Рассчитать реальные и условные константы равновесия, исходя из термодинамической константы. Найти активность,

- равновесную и общую концентрацию с учетом факторов, вляиющих на равновесие (ионная сила, наличие конкурирующих реакций).
- 2. <u>Кислотно-основное равновесие.</u> Написать уравнение для реакций автопротолиза амфипротных растворителей. Дифференцировать кислоты (основания) по силе. Рассчитать рН водных растворов сильных и слабых кислот и оснований, амфолитов, буферных растворов.
- 3. <u>Химическое равновесие в гетерогенной системе.</u> Показать связь между термодинамическим, реальным и условным произведением растворимости. Рассчитать рН осаждения ионов металлов в виде гидроксидов. Найти растворимость осадков в различных условиях.
- 4. <u>Комплексные соединения и органические реагенты.</u> Классифицировать комплексные соединения по типам и свойствам. Показать взаимосвязь ступенчатых и общих констант устойчивости комплексов. Показать, как влияет комплексообразование на растворимость соединений и окислительно-восстановительный потенциал системы. Привести примеры использования комплексных соединений в анализе для обнаружения, разделения, маскирования и определения ионов.
- 5. <u>Окислительно-восстановительные реакции.</u> Рассчитать формальные и равновесные окислительно-восстановительные потенциалы. Показать, как влияют на формальный потенциал кислотность и ионная сила раствора, реакции комплексообразования и образования осадков. Найти константу равновесия окислительно-восстановительных реакций и определить направление реакции.
- 6. <u>Титриметрические методы анализа.</u> Перечислить требования к реакциям, применяемым в титриметрических методах. Объяснить, в каких случаях применяют способы титрования прямое, обратное, вытеснительное, косвенное Перечислить требования к первичным стандартам и привести примеры веществ, применяемых в качестве первичных стандартов. Построить кривые кислотно-основного титрования, выбрать индикатор, оценить погрешность титрования.
- 7. <u>Комплексометрическое титрование.</u> Перечислить требования к реакциям комплексообразования, применяемым в титриметрии. Как правильно выбрать металлохромный индикатор? Построить кривую комплексонометрического титрования. Выбрать условия для комплексонометрического титрования. Привести примеры практического применения комплексонометрии.
- 8. Окислительно-восстановительное титрование. Построить кривую окислительно-восстановительного титрования. Перечислить основные особенности и области применения перманганатометрического, иодометрического, дихроматометрического титрования.
- 9. Спектроскопические методы анализа. Как классифицируют методы спектроскопии? Привести примеры применения методов атомной спектроскопии. На чем основано определение концентрации веществ в методе спектрофотометрии? Перечислить основные характеристики и области применения люминесцентного метода.
- 10. Электрохимические методы. Как классифицируют электрохимические методы? Привести основные характеристики и примеры использования методов ионометрии, вольтамперометрии, кулонометрии, кондуктометрии. Перечислить основные преимущества инструментальных титриметрических методов перед классическими.

В. Примерный список вопросов для промежуточной аттестации

- 1. Химическое равновесие. Константы равновесия в идеальных и реальных условиях. Термодинамическая, реальная и условная константы равновесия.
- 2. Основные типы химического равновесия в гомогенной системе (кислотно-основное, окислительно-восстановительное, комплексообразование). Факторы, влияющие на химическое равновесие.

- 3. Равновесие в гетерогенной системе "осадок-раствор". Константы равновесия. Факторы, влияющие на растворимость осадков.
- 4. Связь произведения растворимости и растворимости соединений. Растворимость малорастворимых соединений в кислотах.
- 5. Кислотно-основное равновесие. Протолитическая теория кислот и оснований. Влияние природы растворителя на силу кислот и оснований. Константы кислотности и основности.
- 6. Равновесие в растворах кислот и оснований, расчет рН.
- 7. Буферные растворы и их свойства. Буферная емкость. Вычисление рН буферных растворов. Амфолиты и их свойства, вычисление рН.
- 8. Комплексные соединения в химическом анализе. Классификация комплексных соединений. Общие и ступенчатые константы устойчивости.
- 9. Использование комплексных соединений в химическом анализе.
- 10. Органические реагенты в анализе. Хелаты, хелатный эффект.
- 11. Влияние комплексообразования на растворимость осадков и окислительновосстановительный потенциал.
- 12. Окислительно-восстановительные реакции в химическом анализе. Окислительно-восстановительная система и ее потенциал. Понятие о стандартном и реальном потенциалах.
- 13. Окислительно-восстановительный потенциал; факторы, влияющие на его величину.
- 14. Направление окислительно-восстановительных реакций, используемых в химическом анализе. Связь константы равновесия со стандартными и реальными потенциалами.
- 15. Скорость окислительно-восстановительных реакций, используемых в химическом анализе. Каталитические и индуцированные реакции. Автокатализ.
- 16. Схема образования осадка. Образование кристаллических и аморфных осадков.
- 17. Условия получения чистых осадков. Метод возникающих реагентов. Вторичные изменения осадков под маточным раствором.
- 18. Сущность титриметрических определений. Классификация методов титрования. Факторы, влияющие на скачок титрования.
- 19. Кислотно-основные индикаторы. Выбор индикатора. Индикаторные ошибки кислотно-основного титрования.
- 20. Сущность гравиметрического анализа. Прямые и косвенные методы. Важнейшие неорганические и органические осадители.
- 21. Строение и устойчивость коллоидной частицы. Коагуляция и пептизация. Получение аморфных осадков.
- 22. Теоретические основы окислительно-восстановительного титрования. Построение кривых титрования.
- 23. Титрование слабых кислот и оснований, построение кривых титрования.
- 24. Использование реакций комплексообразования в титриметрическом анализе. Комплексонометрия. Кривые титрования.
- 25. Титрование многоосновных кислот и оснований, построение кривых титрования.
- 26. Индикаторы в комплексонометрическом титровании. Выбор индикатора.
- 27. Методы обнаружения конечной точки окислительно-восстановительного титрования. Окислительно-восстановительные индикаторы.
- 28. Классификация спектроскопических методов анализа.
- 29. Характеристика метода атомно-эмиссионной спектроскопии.
- 30. Характеристика метода атомно-абсорбционной спектроскопии.
- 31. Характеристика спектрофотометрического метода.
- 32. Характеристика метода люминесценции.
- 33. Классификация электрохимических методов анализа.
- 34. Характеристика кулонометрического метода.
- 35. Характеристика потенциометрического метода.

- 36. Комплексонометрическое определение кальция и магния.
- 37. Перманганатометрическое определение железа (II).
- 38. Дихроматометрическое определение железа (II).
- 39. Методы определения солей аммония.
- 40. Приготовление стандартного раствора Na₂CO₃ и рабочих растворов HCl и NaOH. Фактор эквивалентности.
- 41. Определение фосфорной кислоты.
- 42. Статистическая обработка результатов анализа.
- 43. Рентгенофлуоресцентный анализ почв.

6. Учебно-методическое обеспечение

А. Основная литература

№	Автор	Название книги	Ответственный	Место	Издательство	Год
			редактор	издания		издания
1	Коллектив	Основы аналитической химии. В 2-х тт.	Ю.А.Золотов	Москва	Высшая школа или Академия	2004 или 2010
2	Коллектив	Основы аналитической химии. Практическое руководство.	Ю.А.Золотов	Москва	Высшая школа	2001
3	Коллектив	Методы обнаружения и разделения элементов. Практическое руководство.	И.П.Алимарин	Москва	Изд-во МГУ	1984
4	Т.А.Белявская	Практическое руководство по гравиметрии и титриметрии.		Москва	МГУ	1986
5	И.П.Алимарин, Н.Н.Ушакова	Справочное пособие по аналитической химии.		Москва	МГУ	1977
6	Иванов А.В.	Методическое руководство по качественному и количественному анализу для студентов 2 курса географического факультета МГУ		Москва	МГУ	2001

Б. Дополнительная литература

		1 11				
No	Автор	Название книги	Ответственный	Место	Издательство	Год
			редактор	издания		издания
1	Кунце У., Шведт	Основы		Москва	Мир	1997
	Γ.	качественного и				
		количественного				
		анализа				
2	Кристиан Г.	Аналитическая	Ю.А.Золотов	Москва	Бином	2008
		химия. В 2 тт.				
3	Дорохова Е.Н.,	Задачи и вопросы по		Москва	Мир	2001
	Прохорова Г.В.	аналитической				
		химии.				

7. Материально-техническое обеспечение

Аудиторные занятия проводятся в специально оборудованной аудитории с мультимедийным оборудованием. Вспомогательный материал в виде презентаций и электронных учебных материалов доступен студентам на сайте факультета.