Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный университет имени М.В.Ломоносова» Факультет фундаментальной физико-химической инженерии

УТВЕРЖДЕН

на заседании Ученого совета
«_14_»__июня__2013 г.
протокол №_4_
Заместитель декана по учебной работе
____/_Григорьева Л.Д._/
« 14 » июня 2013 г.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

дисциплины «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ»

Специальности 010701 "Физика" 020101 "Химия"

Квалификации "Физик" "Химик"

Форма обучения очная

УМК соответствует учебному плану подготовки, утвержденному ректором Московского государственного университета им. М.В.Ломоносова академиком РАН В.А. Садовничим 23.10.2009

Название дисциплины: Дифференциальные уравнения.

1. Цели и задачи освоения дисциплины:

Цель освоения обучающимся дисциплины «Дифференциальные уравнения»: узнать о фундаментальной и широкой роли обыкновенных дифференциальных уравнений (ОДУ) в естествознании и быть готовым к использованию навыков составления и практического решения ОДУ и их систем как при изучении дальнейших естественно-научных дисциплин курса, так и в научной работе.

Задачи освоения обучающимся дисциплины «Дифференциальные уравнения»: научиться составлению и практическому решению ОДУ и их систем как при изучении дальнейших естественно-научных дисциплин курса, так и в научной работе.

2. Требования к результатам освоения содержания дисциплины:

В результате освоения дисциплины обучающийся должен:

Знать: методы составления и практического решения ОДУ и их систем, а также основные определения и теоремы, как связанные с этими методами, так и общего характера, относящиеся к месту и роли ОДУ и их систем в естествознании .

Уметь: составлять, на основании геометрического и/или физического описания ситуации, ОДУ и/или их системы, выражающие связи между изучаемыми величинами; применять методы решения рассмотренных в курсе типов ОДУ и их систем.

Владеть: навыками составления, на основании геометрического и/или физического описания ситуации, ОДУ и/или их систем, выражающих связи между изучаемыми величинами, а также методами решения рассмотренных в курсе типов ОДУ и их систем.

Приобрести опыт деятельности: в составлении, на основании геометрического и/или физического описания ситуации, ОДУ и/или их систем, выражающих связи между изучаемыми величинами, а также в решении рассмотренных в курсе типов ОДУ и их систем.

3. Содержание и структура дисциплины

3.1. Содержание разделов дисциплины (К – коллоквиум, Т – проверочная самостоятельная работа (тест), РК - рубежная контрольная работа, ДЗ – домашнее задание, РГЗ – расчетно-графическое задание)

No	Наименова-	Содержание раздела	Форма
pa	ние раздела		теку-
3Д			щего
ел			кон-
a			троля
1	Общие понятия, связанные с ОДУ, методы их составления и грубого решения, простейшие точные решения	Определения понятия обыкновенного дифференциального уравнения (ОДУ) и его решения. Метод изоклин графического построения грубо приближённых решений одномерных ОДУ; примеры. Метод нахождения дифференциальных уравнений семейств кривых; примеры. Метод Ньютона (разложения в степенной ряд) для нахождения решений линейных ОДУ с постоянными коэффициентами. Пример $y'(x)=ay(x)$ (а $\in R$, $y: R \to R$). Методы составления уравнений на основании геометрического либо физического описания связей между величинами. Уравнения в частных производных первого порядка	РГ3, Д3

2	ОДУ перво- го порядка (I)	ОДУ первого порядка (I): с разделяющимися переменными, однородные нелинейные, однородные линейные; методы их решения.	ДЗ
3	ОДУ перво- го порядка (II)	Методы решения ОДУ первого порядка (II): «вариации произвольных постоянных» для линейных неоднородных ОДУ, сведения к линейным для уравнений типа Бернулли и для уравнений типа Риккати с подбирающимся частным решением. Уравнения высших порядков.	ДЗ, РК
4	ОДУ "в дифферен- циалах":	Определение и методы решения ОДУ "в полных первых дифференциалах": введение под знак дифференциала и криволинейное интегрирование II рода; примеры. Определение ОДУ в первых дифференциалах. Метод интегрирующего множителя.	дз
5	Методы введения параметра	Метод "введения параметра" для уравнений первого порядка, не разрешённых относительно производной. Понятие и метод поиска особых решений; пример. Уравнения Лагранжа и Клеро. Методы понижения порядка в ОДУ: введение новой	Д3
6	Системы в дифферен- циалах	искомой функции, введение параметра. Нелинейные системы ОДУ 1-го порядка в дифференциалах. Методы: исключения неизвестных, выделение интегрируемых комбинаций.	Д3
7	Первые интегралы	Теоремы о существовании и о единственности решения нормальной системы ОДУ первого порядка $\bar{Y}'(x) = \bar{F}(x,\bar{Y}(x))(\bar{Y}:(a,b) \to \mathbf{R}^n)$ (1) (без доказательства). Определения первых интегралов автономных $\bar{Y}'(x) = \bar{F}(\bar{Y}(x))$ (1a) и неавтономных (1) нормальных систем и для ОДУ в полных дифференциалах; вывод уравнений для первых интегралов автономных и неавтономных нормальных систем. Определение независимости системы первых интегралов. Метод получения решений системы (1) из системы п независимых первых интегралов.	ДЗ
8	Линейные уравнения с постоянными коэффициентами	Метод нахождения общего решения линейного однородного, произвольного натурального порядка, ОДУ $a_0y^{(n)}(x) + a_1y^{(n-1)}(x) + \cdots + a_{n-1}y'(x) + a_ny(x) = 0$ с постоянными коэффициентами. Метод нахождения частных решений линейных ОДУ $a_0y^{(n)}(x) + a_1y^{(n-1)}(x) + \cdots + a_{n-1}y'(x) + a_ny(x) = b(x)$ с неоднородностью $b(x)$ вида квазиполинома.	ДЗ
9	Общие ли- нейные си- стемы	Теорема существования и единственности решений начальных задач для линейных систем $\bar{Y}'(x) = A(x)\bar{Y}(x) + B(x)$ (л) произвольного натурального порядка п. Линейность множества решений однородных линейных систем $\bar{Y}'(x) = A(x)\bar{Y}(x)$ (л0), его размерность, линейность разрешающего отображения, фундаментальная система решений (ФСР). Описание множеств решений неоднородных линейных систем	К

		(π) через множества решений однородных систем $(\pi 0)$.	
10	Вронскиан системы	Вывод уравнения для определителя Вронского упорядоченной системы п решений уравнения (л0).	
11	Фундаментальные системы решений и вронскиан линейного уравнения	Теорема существования и единственности для линейных уравнений вида $a_0y^{(n)}(x) + a_1y^{(n-1)}(x) + \cdots + a_{n-1}y'(x) + a_ny(x) = b(x)(y)$. Линейность множества решений однородных уравнений вида $a_0y^{(n)}(x) + a_1y^{(n-1)}(x) + \cdots + a_{n-1}y'(x) + a_ny(x) = 0$, (у0) его размерность, ФСР. Описание множеств решений неоднородных линейных уравнений вида (у) через множества решений однородных уравнений (у0). Вывод уравнения для определителя Вронского упорядоченной системы п решений уравнения (у0), формула Остроградского-Лиувилля.	
12	Второе ре- шение ФСР по формуле Остроград- ского, функ- ция Грина	Метод нахождения второго решения ФСР уравнения (у0) при n=2, если задано одно из них. Постановка и метод построения функции Грина для краевой задачи с таким уравнением. Вид общего решения краевой задачи для (у) при n=2 с произвольной правой частью - с помощью функции Грина.	ДЗ
13	Фазовые портреты (I)	Фазовые портреты решений системы $\bar{Y}'(t) = A\bar{Y}(t)$ (2) с постоянной вещественных матрицей A (I). Случаи с различными собственными числами. Фазовые портреты решений системы $\bar{Y}'(t) = A\bar{Y}(t)$ (2) с постоянной вещественных матрицей A (II). Случаи с совпавшими собственными числами (жордановы клетки размера 1 и 2).	ДЗ
14	Устойчи- вость	Свойства простой и экспоненциальной устойчивости линейной системы $\bar{Y}'(t) = A\bar{Y}(t)$, достаточные условия для наличия и для отсутствия этих свойств (без доказательств). Метод построения фазовых портретов автономных систем $\bar{Y}'(t) = \bar{F}(\bar{Y}(t))$ в окрестностях их особых точек.	ДЗ, РГР
15	Зависимость решения от параметров	Непрерывность и дифференцирование решения начальных задач для нормальной системы вида $\bar{Y}'(x) = \bar{F}(x, \bar{Y}(x), \mu), \bar{Y}(0) = \overline{g(\mu)}$ по параметру и по начальным условиям (без доказательства).	Д3,

3.2. Структура дисциплины

Общая трудоемкость дисциплины составляет 96 часов, из них лекции — 32 часа, семинары— 32 часа, самостоятельная работа студентов — 32 часа.

Вид работы	Семестр 4	Всего
Общая трудоемкость	96	96
Аудиторная работа:	64	64
Лекции (Л)	32	32
Практические занятия (ПЗ)	32	32

Лабораторные работы (ЛР)	0	0
Самостоятельная работа	32	32
Вид итогового контроля	Зачет, экзамен	

Разделы дисциплины по семестрам: один семестр

№ раз-	Наименование раздела	Количество часов				
дела		Всего			Внеаудиторная	
			Л	П3	ЛР	работа
1	Общие понятия, связанные с ОДУ, методы их составления и грубого решения, простейшие точные решения	6	2	2		2
2	ОДУ первого порядка (I)	6	2	2		2
3	ОДУ первого порядка (II)	5	2	1		2
4	ОДУ "в дифференциа- лах":	5	2	1		2
5	Методы введения па- раметра	6	2	2		2
6	Системы в дифферен- циалах	6	2	2		2
7	Первые интегралы	6	2	2		2
8	Линейные уравнения с постоянными коэффициентами	6	2	2		2
9	Общие линейные си- стемы	6	2	2		2
10	Вронскиан системы	6	2	2		2
11	Фундаментальные си- стемы решений и вронскиан линейного уравнения	6	2	2		2
12	Второе решение ФСР по формуле Остро- градского, функция Грина	8	2	4		2

13	Фазовые портреты (I)	16	4	8	4
14	Устойчивость	4	2		2
15	Зависимость решения от параметров	4	2		2
	Итого:	96	32	32	32

3.3. Практические занятия (семинары)

№ за-	Тема	Кол-во
нятия		часов
1	Составление ОДУ	1
1	Методы изоклин и Ньютона	1
2	Разделенние переменных, однородные нелинейные и	1
	однородные линейные ОДУ І-го порядка	
2	«Вариация произвольных постоянных» для линейных	1
	неоднородных ОДУ І-го порядка	
3	Уравнения Бернулли и Риккати	1
3	ОДУ в дифференциалах, интегрирующий множитель	1
4	Методы введения параметра для ОДУ	2
56	Нелинейн. системы в дифференциалах, 1-е интегралы	4
7	Линейные однородные ОДУ и системы с постоянны-	2
	ми коэффициентами: комплексные и действительные	
	решения	
810	Линейные неоднородные ОДУ и системы с постоян-	6
	ными коэффициентами: с квазиполиномом в правой	
	части, метод вариации постоянных	
11	Функции Грина краевых задач	2
12	Дифференцирование решений задач Коши по пара-	2
	метру	
1314	Фазовые портреты линейных ОДУ и систем 2 порядка,	4
	устойчивость	
1516	Фазовые портреты нелинейных ОДУ и систем	4

3.4. Самостоятельное изучение разделов дисциплин - НЕТ

№ раз-	№ вопроса	Вопросы, выносимые на самостоятельное	Кол-во ча-
дела		изучение	сов
1	1	Общие понятия, связанные с ОДУ, мето-	2
		ды их составления и грубого решения,	
		простейшие точные решения	
2	2	ОДУ первого порядка (I)	2
3	3	ОДУ первого порядка (II)	2
4	4	ОДУ "в дифференциалах":	2
5	5	Методы введения параметра	2
6	6	Системы в дифференциалах	2

7	7	Первые интегралы	2
8	8	Линейные уравнения с постоянными ко- эффициентами	2
9	9	Общие линейные системы	2
10	10	Вронскиан системы	2
11	11	Фундаментальные системы решений и вронскиан линейного уравнения	2
12	12	Второе решение ФСР по формуле Остроградского, функция Грина	2
13	13	Фазовые портреты (I)	4
14	14	Устойчивость	2
15	15	Зависимость решения от параметров	2

4. Образовательные технологии

4.1. Интерактивные образовательные технологии, используемые в аудиторных занятиях

Семестр	Вид заня-	Интерактивные образовательные технологии	Кол-во часов
	тия		
	Л	Лекция «обратной связи»	32
	ПЗ	Семинар-дискуссия	32
Итого			64

5. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Экзаменационные билеты находятся на сайте факультета по адресу http://www.physchem.msu.ru/doc/di/25.pdf

6. Учебно-методическое обеспечение дисциплины

6.1. Основная литература:

А.Ф.Филиппов: Введение в теорию дифференциальных уравнений. Изд. 2-е, испр.

М.: КомКнига, 2007

А.Ф.Филиппов: Сборник задач по дифференциальным уравнениям. Ижевск: "РХД", 2000

6.2. Дополнительная литература

Ю.С. Сикорский: Обыкновенные дифференциальные уравнения с приложением их к некоторым техническим задачам. М.: URSS, 2009.

В. И. Арнольд: Математические методы классической механики. — 3-е изд. — М.: Наука, 1989. — 472 с.

7. Материально-техническое обеспечение дисциплины

Аудитория с меловой либо интерактивной доской.